0=5x^2-200-5

Simple and best practice solution for 0=5x^2-200-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=5x^2-200-5 equation:



0=5x^2-200-5
We move all terms to the left:
0-(5x^2-200-5)=0
We add all the numbers together, and all the variables
-(5x^2-200-5)=0
We get rid of parentheses
-5x^2+200+5=0
We add all the numbers together, and all the variables
-5x^2+205=0
a = -5; b = 0; c = +205;
Δ = b2-4ac
Δ = 02-4·(-5)·205
Δ = 4100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4100}=\sqrt{100*41}=\sqrt{100}*\sqrt{41}=10\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{41}}{2*-5}=\frac{0-10\sqrt{41}}{-10} =-\frac{10\sqrt{41}}{-10} =-\frac{\sqrt{41}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{41}}{2*-5}=\frac{0+10\sqrt{41}}{-10} =\frac{10\sqrt{41}}{-10} =\frac{\sqrt{41}}{-1} $

See similar equations:

| Y(7-4y)=0 | | X-9=4x-44 | | 2*3.14*r=207.24 | | 20+40x=100 | | 3-12x2=0 | | 16x/8=10 | | 8j=8j | | b8=b8 | | n²-5n-6=0 | | x=7=1x | | 8×10x=160 | | -v=12= | | X-5/x+7=2/3 | | 3p=126 | | 8x+18=68−2x | | (x^2)=x+1 | | 0.22x=0.2 | | (6x+5)+(8x–9)=(6x+5)+(8x–9) | | x=(x+1)/x | | -12=3/5n | | s+54=68 | | 90+2x+3x+4+1=180 | | 90+5x+14+40=180 | | -2x=11=6x= | | C(x)=0.75x+7 | | n-10=9n-3= | | 3z-1/2z=10+z | | –11=3g+4 | | 3s+24=90. | | 4x+6=3x=20 | | 15x-8=7x-48 | | 12×5=9(3x+2) |

Equations solver categories